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Dynamics of a laser-irradiated adatom

Sander van Smaalen, André Peremans,* Henk F. Arnoldus and Thomas F. George

Departments of Physics & Astronomy and Cheaistry, 239 Fronczak Hall,
State University of Nev York at Buffalo, Buffalo, New York 14260, U.S.A.

Abstract - The dynamics of an adsorbed atom irradiated by an I.R. laser
i{n resonance with & single pair of states of the vibrational adbond is
studied. Using a non-perturbative treatment for the laser-adbond
interaction, a master equation 1is derived, which governs the tise
evolution of the populations of the laser-dressed states of the adbond.

The effect of resonant heating

and laser-induced desorption, as an

example of a possible laser-induced surface process, is discussed.

INTRODUCTION

It has been reslized for quite a time that
laser irradiation can affect or induce
chemical reactions [1,2]. Combining this
with the common knovledge that surfaces,
i.e., catalysts, can influence cheaical
reactions, then opens the interesting
possibility of Joining the control by
lasers and surfaces, in order to manipulate
the occurring chemical reactions in greater
detail. A quantitative theoretical
treatment of a chemical reaction is very
involved. However, the first step in a
chemical reaction is the formation of an
activated complex. The energy necessary
for the formation of the complex can be
extracted from the translational and
vibrational energy of the reactants or
added inert species. Here enters one
possidbility of applying a laser to modify
the reaction, since reacting molecules
maight ascquire the necessary energy to
become excited to high vidrational or
electronic states from the radiation field.
Surfaces alter reactions via the induced
modifications of the sdsorded species and
by the fact that they restrict the motion
of the molecules. The rtole played by a
laser in a surface reaction is more
complicated than for gas-phase reactions.
The radiation may excite the moleculs
before adsorption, it may excite the
substrate, or it may excits the already
adsorbed molecule. Ve shall only consider
the latter mechanisa.

Detsiled comprehension of laser-
induced surface reactions starts vith the
study of the dynamics of & single adsorbed
solecule which is illuminated by a strong
coherent field. 1In this paper we shsll
focus  on recent developments in the theory
of the dynamics of vidrationally-excited
atoms. Topics to be covered are: How can

% Aspirant du Tonds National de 1la
Recherche Scientifique, Bruxelles.

L IR Y

e e LR

the laser excite the adatom, which excited
states vwill bs populated, and vhere does
the absorbed energy go? Furthermore, the
feasibility of laser-induced (resonant)
desorption is discussed.

RELAXATION AND COHERENT EXCITATION

We consider an adsorbed atom on a harmonic
crystal, irradiated by a laser, which is
tuned into resonance vwith a single pair of
levels of the vibrationally dounded atoms
[3-5S). Only the motion perpendicular to
the surface is taken into account, because
the lateral motion (migration over the
surface) hardly couples to the field. The
adbond is represented by its reduced
density operator (6]

o(t) = Tr o(t) (1)

vhere the trace is over tha quantus states

of the crystal and over the radiation

states. With standard techniques [6,7], it

is easy to shov that in adbsence of a laser,

the time evolution of the level populations

P (t) = <ajo(t)|n> is governed by the
ster equation

g o] - ren @
k

vhere s is the rate constant for the
tunslti%k from level n to level k, and the
summation extends over the eigenstates of
the adbond. The rate constants are
determined by the interaction of the adbond
with the substrate. Most extensively
studied is the relaxation of the adbond due
to the lattice vidrations (3-5‘- A
transition from state |n> to state |k> is
then accompanied by the emission into or
the absorption from the substrate of one or
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more phonons. Por one-phonon processes the
rate constants are given by [4)

oy = 15,12 ) (3

s( l"’ngl )
“nk

2
flo,) = ,‘% (Rlw,) + 1) (@

vhere w k™Y "% denotes the transition
froquanc9. M 13 the®nass gf a surface atoms,
(w) = [exp(Aw/kT) - 1) °, end S, is the
matrix element of the dortvattot of the
adbond potential. The function g(jw .|) is
the density of phonon states. - For a
transition frequency which is larger than
the Debye  frequency, g(lw.]) s
vanishingly small, and lu!!iphonon
transitions have to be taken into account
(sl. On wmetals the coupling with
electronic transitions in the conduction
band provide another possible channel for
relaxation [9,10].

The interaction between the laser and
the adbond can be treated analogously to
the phonon interactions (S]), provided that
the intensity is not too high. This yields
a similar master equation as Bqn. (2). The
transition rates then divide into a phonon
part (Eqns. (3) and (4)) and a term due to
the interaction with the laser, which
represents radiative stinulated
transitions. The latter only occurs in the
rate constants a__ and a__ for the coupled
levels |g> and 8%je>. Bt is found to be
proportional to the laser intensity or,
equivalently, to the square of the Rabi
frequency

Q= t.lgo! (s)

wvhere y is the transition-dipole matrix
element, and E denotes the amplitude and
polarizstion of the electric field of the
laser.

The successive approzimations involved
can easily be studied with the Zwanzig
projection technique (7). Por the time
evolution of the reduced density matrix we
find the exact equation

de . Lim, o(0))
t
STy [ e mee) st (0

vhare the memory kernel K(t,t') contains
the Hamiltonian of the adatoa, H_, the
bath, and their interaction. He [
oquals the density matrix of the dath dt
thermal oquilidrium. The first

approximation is to retain in K(t,t') only
the lowest-order (second-order) terms in
the interaction. This is assumed to be
sccurate for the phonon coupling and is

also expected to be a good approximation
for the laser interaction [10). The second
assumption is the Markov approximstion (6],
which asserts that ve can replace o(t-t')
by o(t) in Eqn. (6). This can be justified
1f o(t) does not change much on s timescale
on which K(t,t') decays to zero as &
function of t' for fixed t. For phonons,
this 4is the characteristic time of the
displacement autocorrelation functien,
vhich is sufficiently short {11). PFor the
laser interaction the decay time of K(t,t')
is the correlation time of the laser, which
is essentislly infinite for monochromstic
radiation. It was found that for
reasonable laser intensities the Markov
approximation gives poor results (10].
Then an integrodifferential equation (Eqn.
(6)) has to be solved, rather than a master
aquation.

A non-perturbative approach to the
laser-adbond interaction was developed
recently [4). Here the Hamiltonisn of the
adbond, the laser field and the interaction
was diagonalized, and subsequently the
phonon damping wvas taken into account in
the wususl wvay. Note that with this
alternative treatment the prodbleams with the
Markov approximation do not arise. Besides
that, the method applies to arbitrary
strong irradiances.

Let us denote the eigenstates of the
adbond by |k>, and in particular by |g> and
|e> the two states which are coupled by the
laser. Then the eigenstates of the adbond
Hamiltonian, the laser field and the
interaction are given by [k> for k = e,g.
but |g> and |e> are superposed to yield the
so-called laser-dressed states [4,12].
Explicitly wve obtain

|+> = sin(8/2)|g> + cos(8/2)|e> (7)
|-> = cos(68/2)|g> - sin(8/2)]e> (s)

with € = arctan(f/s) and & the detuning of
the laser from resonance. Subsequent
coupling to the phonon raservoir then
results in a wmaster equation for the
dressed-state populations. The transition
rates assume & more complicated fors then
given by Eqn. (3). PFor example, the
transition from |+> to |k> with k = ¢,g is
given by the rate constant [4)

oy = 88008 12 + '+“"’+t"\.)|’.t|z
(%)

withg_ = cosz(clz). g, " sinz(ill). and
is the laser ftoqucxcy. A particulatgy
transparent interpretation arises {f two
snergy levels are assigned to a single
dressed state. Then w_ and w, - can be
rvegarded as the sigenvalues of [+>, and
similarly e and w_ represent the
positions of ]-). as {s illustrated in Pig.
1. The transitions from |#> to |k> then

o# 7,
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Fig. 1.
the diagraa

the energy levels of the
the interaction.
dressed states |-> and |#>.
by arrows.

The energy levels of the adbond plus the laser ars represented dy
(s) on the left-hand side.
mode is indicated Dby n, and uk is the laser frequency.

eigenstates of the adbond and the laser, including
The adbond states |g> and |e> are then replaced by the
The occurring phonon transitions are indicated
The left-most three transitions persist vhen the laser is turned
off. The other transitions occur only in the presence of the laser.

The number of photons in the laser
Diagram (b) shows

Apart

from the change in adbond state and in the number of phonons, they also
involve the absorption or emission of photons.

contain transitions fro. level w, to
and from level w, - u! The phonon
energies involved' aro cxa ly the level
distances, a3 depicted in Pig. 1.

Transitions betveen either one of the
levels w, or w_ and s level w, and
transitions betveen w and w (k,t = + or -)
survive vhen the lafer if turned off.
Hence they can be interpreted as pure-
phonon transitions. The additional
transitions also require the absorption or
emission of photons. PFor a lov intensity
the rate constants for these transitions
are proportional to the laser power (one-
photon process) or its square (two-photon
process). For high intensities they assume
saturation values, corresponding to the
value 0 = ¢ 2/2 in the parameterization of
the dressed states.

The coherences between the dressed
states evolve independently from the
populations. It can be shown that they
vanish exponentislly in time [4). The
inverse of Eqns. (7) and (8) can be used to
derive an equation for the populations of
the bare states. It then follows that the
equations for the populations are coupled
to those for the coherences P__ and P
This result is different from p”turht”n
theory, which yields a master equation for
the bare-level populstions, regardless of
the time evolution of the cohersnces.

Sufficiently 1long after the switch-on
of the laser, the systea will reach s
steady state, for which the reduced density
matrix of the adbond remains constant in
time. Por dP /4t = 0, the coherences
between the re states can then be
elininated, and s genuine master equation
for the bars-level populations
arises [4,13]). Ve find

A 7o) = | p(e. 10)
k

Here, A' = i a' and a"* =&, except for

|
a.' and a‘.. vhich are given by
A+ A
a' =a _ ¢+ 4.-2‘& 202 (11)
A Y W Tt
e
A A
l"'l.+ J.*Z‘ 202. (12)
¢ B (A +a) 4
°
Note that ia the steady state the Markov

approximation for the laser field gives the
same —result as the non-perturbative
spproach (10]),

ENERGY FLOW

A phonon transition from state [k> to |t>
changes the ensrgy of the substrate by an
amount of the phonon energy Kjw. .|. Phonon
absorption lowers the substrate energy, and
phonon emission raises its energy content.
In equilidrium (and without a laser) the
net senergy exchange between the adbond and
the substrate is zero. In perturdbation
theory the laser gives rise to transitions
betwean the two levels |e> and |g>. With

each transition an energy quantum is
exchanged between the laser and the ad

In the non-perturbative approach the
absorption/eaission of photons is

incorporated in the diagonalization,
resulting in the appearance of dressed
states, and only the phonon transitions
remain explicitly present (Pig. 1).
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The populations are time independent
in the steady state, as is the adbond
energy. The only effect of the transitions
between the adbond states is then to carry
a net energy flov from the laser into the
substrate, & process which {s called
resonant heating [14). The energy vhich is
absorbed by the crystal per unit of time is
given by {13,15,16)

o A +A
T =y —_ &
dt (A. + A')z + “2

2
L XORE X0 (13)

Por low intensities the populations of |[g>
and |@> are hardly altered by the
radiation, and hence it follows from Eqn.
(13) that the energy flov is proportional
to the intensity Q. It can be shown from
ns. (10) and (13) that the quantity
023(P («)-P_(«)) becomes independent of 02,
and !onuq ntly the energy flow saturates.
An upper bound for the energy flow is (15]

B ¢y, 200 w

which exhibits the saturation effect. The

equality holds in the lovw-teaperature
limit.
Prom expressions (11) and (12) 1t

follovs immediately that we can interpret
the second terms on the right-hand side as
the rate constants a_ for stimulated photon
absorption and emilsion in the |e> - |g>
transition. Then the absorption rate
equals a_P (»), and stimulated emissions,
vhich acfolipany an |e> + |g> transition,
occur at a rate a P (e). The effective
nusber of transitiofis®from |g> to |e> per
unit of time then becomes a (P (=) -
P (=)), and multiplication by EheSphoton

gy then yields the result (13).
This idéntification slucidates the
appearance of the various factors in the
expression for dwW/dt.

CONCLUSIONS

A theory is presented for the dynamics of
an adatom, irradiated by an intense laser,
vhich 1is in near resonance vith a single
pair of 1levels of the vidrational addond.
A master equation for the time evolution of
the populstions of the laser’dressed states
of the reduced density matrix of the adbond
is derived. The transitions betvesn the
states can bde interpreted as phonon
transitions betwveen the dressed levels of
the adbond. Stimulated radiative
transitions are incorporated in the
transformstion to dressed states.

The phonon transitions between the
adbond states give rise to an energy flow
from the laser into the substrate. Even in
the steady state (vhers the level
populations are time independent) the
energy flow assumes a non-sero value. Q Por
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lov intensitijes the energy flow {s
proportional to the laser intensity,
vhereas for high intensities saturation
occurs. This {s {llustrated by the
derivation of an upper bound (Eqn. (14)).
It follows that the energy flov is limited
by the excited-level population, multiplied
by its decay constant. This eclearly
exhibits that, when the laser is used to
maintain the adbond in an excited state, a
fast heating of the crystal is inevitabdle.
Moreover, the ratio of the excitaed-level
population and the energy flow (considered
as 8 measure of the efficiency of one
process over the other) appears to be
independent of the laser pover.

To be specific, let us cospare the
efficiency of a laser-induced surface
process and the energy flow. A measure of
this is the number of photons which is
necessary to sustain the desired process,
divided by the number of photons which heat
the substrate. As an exaaple we have
studied laser-induced desorption [15). It
is found that for lowv temperatures this
ratio is independent of ths laser power,
and much smaller than unity, indicating
that laser-induced (resonent) desorption
cannot be expected to be a very efficient
process,
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